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- provides expertise in:

Medical physics – physics of radiation therapy and medical imaging
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Radio-pharmaceutical chemistry – support for nuclear medicine

Radiometrology – support to everyone
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Overview of Lecture 1

Radioactivity Interaction of radiation with matter
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Questions to think about before we start with lecture:

• What is radiation? What is radioactivity?

• Where can we find radiation around us? Sources of radiation?

• Is all radiation dangerous for health?



➢ Radiation is the transmission of energy through space or medium

Radiation

Cosmic rays - Particles

Electromagnetic radiation - Photons

We will be interested only in ionizing 

radiation since it presents a health hazard

Image credit: CERN
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What is ionizing radiation?

➢ Ionizing radiation refers to radiation having sufficient energy to 

remove electrons from atoms or molecules in the medium, 

including the cells of our bodies

Forms of ionizing radiation:

• Particles (proton, electron, α-particles, neutron…)

• Photons (UV, X-rays, γ-rays)

E > 10-30 eV

Before After



Sources of ionizing radiation on Earth

2) Naturally occurring radioactive materials

3) Man-made sources 

• Food (K-40)

• Ground (U-238, Th-232)

• Air (Rn-222, C-14)

1) Cosmic rays
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Population radiation exposure in Switzerland

Rn-222
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Other
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Medicine
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Cosmic
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Internal

10%
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RADIOACTIVITY
Lecture objectives

At the end of the lecture you should be able to :

- Describe different decay possibilities of radiactive nucleus
- Describe the concepts of activity, decay and half-life
- Use the radionuclide charte to determine the characteristics of a particular decay chain

9



➢ Spontaneous emission of radiation by an unstable nucleus

What is radioactivity?

Cosmic rays - Particles

Electromagnetic radiation - Photons

To understand the radioactivity we need to start from the nucleus…
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Zooming into the atom

Quark model of a neutron

Masses:

m
e
= 511 keV/c

2

m
p
= 938.2 MeV/c

2

m
n
= 939.3 MeV/c

2

m
p
≈ m

n

m
p

= 1836 m
e

www.LiveScience.com

Quark model of a proton

u
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d
d
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What binds nucleons together?
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➢ Protons are positively charged, neutrons have no charge, 

why the nucleus doesn’t fall apart?

Repulsive

core

(< 0.3 fm)

distance
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Strong

attraction

Weak

attraction

about 2 fm

Answer: Strong nuclear force

Characteristics:

• Independent of charge

- identical for p-p, p-n, n-n

• Short range

- each nucleon bound to its      

immediate neighbor



The four fundamental forces in nature
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What binds nucleons together?
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Binding 

energy B

B =  Zm
p
c

2
+  Nm

n
c

2
- m

A 
c

2

Proton energy Neutron energy Nucleus energy

➢ The concept of the binding energy (have in mind m ≡ E):

http://www.educol.net/poids-t14706.jpg


Binding energy 
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A

E
NZ

Nomenclature

Mass number

• determines the mass of 

a nucleus : N + Z

• different Z for a given A 

= isobares

Element

• characterised by Z

Atomic number

• number of protons or electrons

• chemical characteristics of the 

element

Amount  of neutrons

• different N for a given Z 

= isotopes
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A

E
NZ

• Examples of isotops (same element, different A)

  −12 12

6 6C C C 12

  −13 13

6 7C C C 13

  −14 14

6 8C C C 14

isotopes

of

carbon

17

Nomenclature



➢ When an isotope has many more neutrons than protons, or the opposite,

its nucleus becomes unstable.

➢ Unstable nucleus decays by emitting radiation to release its energy and

regain its balance. This phenomenon is called radioactivity.

18

Stable and unstable nuclei

➢ Stability of a nucleus is determined by the number of protons and neutrons

Hydrogen has three isotopes :

- hydrogen: 1 p

- deuterium: 1 p, 1 n

- tritium: 1 p, 2 n 

radioactive

Carbon has also three isotopes:

- C-12: 6 p, 6 n

- C-13: 6 p, 7 n

- C-14: 6 p, 8 n 

radioactive



19https://en.wikipedia.org/wiki/Exponential_decay

Radioactive decay

➢ Spontaneous and stochastic (random) mechanism

➢ Decay probability λ [s-1]

• Specific for the considered nucleus

• Does not change with time

( ) ( )
( )

( )
dN t

dN t N t dt N t
dt

= −  = −

Solution: Exponential decay

( ) −= t

0
N t N e

( )
−

=
ln2 t

T
0A t A e

➢ Activity A [Bq]

• Number of decays per second [Becquerel (Bq)]



( )
−

=
ln2 t

T
0A t A e
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Activity A(t)

Q1: If you plan to inject an activity of 800 MBq of Tc-99 at 10 am, what activity 

should you prepare at 8 am? 

T
1/2

(Tc-99) = 6 hours
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Time dynamic of radioactive decay



➢ The time at the end of which a radioactive atom will have a 50% chance of having 

decayed. In other words, after T
1/2

50% of atoms will decay. 

Krypton 89 → ~ 3 minutes

Uranium 238 → 4.5 billion years

Plutonium 239 → 24 000 years

Carbon 14 → 5730 years

The half-life can vary considerably depending on the elements:

22

Half life T
1/2

Radon 222 → 3.8 days

Uranium 235 → 704 million years

➢ Does not depend on the initial quantity, but only on the considered nuclide.
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Half life T
1/2

Q2: How many parent radioisotopes will remain after t = 2T
1/2

? 

1. 50%

2. 0%

3. 25% 

4. 12.5% 

Q2: What is approximately the reduction factor od N after t = 10T
1/2

? 

1. 10

2. 20

3. 1000 

4. 10000 
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Half life T
1/2

Q3: Find relationship between T
1/2

and λ (half-life and decay probability).
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Where to find look for information?
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Nuclide chart

Where to find look for information?
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Nuclide chart

Stable nuclei
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T
1/2

> 1 year
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T
1/2

< 1 year
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T
1/2

< 1 h
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T
1/2

< 1 min
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T
1/2

< 1 s



Radioactivity: History lesson

Cosmic rays - Particles

Image credit: nobelprize.orgImage credit: nobelprize.org

Becquerel’s photographic film

March 1896

The story in short:

• Few months earlier Roentgen 
discovered X-rays

• Becquerel believed that 
phosphorescent uranium salts 
emit X-rays

• He would wrap photographic 
plates in black paper, put 
uranium on top and exposed 
it to sunlight

• One day weather got bad so 
he put the plates in the 
drawer without exposing 
uranium to sunlight

• However, the plates showed 
strong exposure

Henry Becquerel

Marie Curie

Pierre Curie

19
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➢ In which form is the radiation emitted?

➢ How is the parent nuclide changed?

Cosmic rays - Particles

Electromagnetic radiation - Photons

Types of radioactive decay



35

Z

N

Z-2

N-2

α decay
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➢ Example of alpha decay: Ra-226 → Rn-222

α decay



R. B. Firestone, Table of Isotopes, Wiley-Interscience, 1996

➢ Example of alpha decay: Ra-226 → Rn-222

α decay
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➢ Alpha decay involves the emission of an alpha particle (helium 

nucleus: 2 protons + 2 neutrons). The energy spectrum consists 

of lines that can be used to identify nuclides by spectrometry.

➢ The energy of emitted α-particle

α decay
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Z

N

Z+1

N-1

anti-neutrino

β- particle = electron

β-
 decay
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➢ β-  
decay involves the transformation, inside the

nucleus, of a neutron into a proton which leads to the

emission of an electron and an antineutrino.

➢ The energy spectrum of β-
particle is continuous:

- energy is shared between the electron and neutrino

➢ Example of β-
decay: C-14 → N-14

β-
 decay
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Radioactive decay

Q4: Which of the following nuclear transformations of the radionuclide E 

describes the beta minus (β-) decay?

R. B. Firestone, Table of Isotopes, Wiley-Interscience, 1996

1) 𝑍
𝐴𝐸𝑁 → 𝑍−2

𝐴−4𝐸𝑁−2

2) 𝑍
𝐴𝐸𝑁 → 𝑍+1

𝐴𝐸𝑁−1

3) 𝑍
𝐴𝐸𝑁 ∗→ 𝑍

𝐴𝐸𝑁

4) 𝑍
𝐴𝐸𝑁 → 𝑍−1

𝐴𝐸𝑁+1
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Z

N

Z+1

N-1

neutrino

β+
 decay

β+ particle = positron
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Positron emission tomography

 PET

Use of β- radionuclides in medicine
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➢ An atom will stabilize itself by emitting

gamma radiation with well defined energies.

The energy states, and the wavelengths of the

emitted radiation, are governed by the laws of

quantum mechanics

➢ This feature allows to identify nuclides by

identifying lines in the energy spectrum.

En
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Types of radioactive decay: γ decay



➢ Identification of elements by gamma spectrometry

45

Types of radioactive decay: γ decay
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Radioactive decay

Q6: What is the mean number of photons having energies between 1 

and 2 MeV emitted after 10'000 decays of Co-60?

R. B. Firestone, Table of Isotopes, Wiley-Interscience, 1996



➢ Fission is typically caused by the capture of a neutron (although it can be spontaneous 

as well) in a small number of very heavy nuclei, called fissile, weakened by too many 

nucleons. These very large nuclei then split into more stable nuclei, releasing energy by 

fission 

➢ Examples of fissile nuclei: U-235, Pu-239, U-233 

47

Types of radioactive decay: fission
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Let’s come back to the nuclide chart, and focus 

on the colour coding to better understand it

Nuclide chart
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Z

N

mother

daughter

A A 4 4

Z N Z 2 N 2 2 2

particule 

E E He−

− −



→ +

examples:

Rn-222

Am-241

U-238
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Nuclide chart: α decay
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−

+ −
→ +  + A A

Z N z 1 N 1
anti-neutrinoélectron

E E

➢ Neutron transforms into a proton
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Z

N

mother

daughter

Nuclide chart: β- decay

examples:

H-3

C-14

K-40

Bi-210



+

− +
→ +  + A A

Z N Z 1 N 1
neutrinopositron

E E

➢ Proton transforms into a neutron

examples:

C-11

N-13

O-15

F-18
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Z

N

mother

daughter

Nuclide chart: β+ decay
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Nuclide chart: fission
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Swiss Radiological Protection Ordinance

Where to find look for information?
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Radioactivity around us: Primordial radionuclides

➢ Primordial radionuclides are here since 

the beginning of the Earth (4.5 billion 

years):

Uranium-238 (T
1/2

=4.5 billion years)

Thorium 232 (T
1/2

=14 billion years)

Potassium-40 (T
1/2

=1.2 billion years)
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Radioactivity around us: Radon

➢ Exposure to Rn-222 (T
1/2

= 3.8 days) is the 

largest naturally occurring environmental hazard



57

Radon in Switzerland

➢ Probability of exceeding the reference value:

Federal Office of Public Health (FOPH)
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Radioactive decay

Q7: Which type of cancer can be caused by Rn-222 and why?  



INTERACTION OF RADIATION WITH MATTER
Lecture objectives

At the end of the lecture you should be able to : 

- Describe how different types od radiation interact with matter
- Understand particle tracks in matter and their dependecy on particle mass and energy

59
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Interaction of radiation with matter

Charged 
particle

Photon

directly ionizing

indirectly ionizing



ICRU 86

Electron tracks in matter

➢ Electrons interact mainly with 

other electrons inside the matter 

and produce “zigzag” trajectories

➢ Large dispersion of traces 

61

Explanation: collisions between 

particles of same masses



➢ An electron can be slowed down by Coulomb interaction with: 

- other electrons in the matter → collision

- nuclei in the matter → radiative (bremsstrahlung)

62

Collision

with the electrons close to the track

Radiative

photon emission in the 

nucleus vicinity

(bremsstrahlung)

Atom of 

matter

Interaction of electrons with matter
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Stopping power of electrons in water

The stopping power of a material for a particle is the amount

of energy that it loses per unit length along its path. The mass

stopping power is stopping power normalized to the density ρ
of the material

Stopping power

𝑆 =
𝑑𝐸

𝑑𝑥



➢ The more protons (the higher the atomic number Z), the greater the

radiative process is.
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➢ 1 MeV electron in water losses about 1% of its energy by radiative interaction

➢ At 100 MeV, radiative braking becomes dominant over collision process

64

Radiative vs. Collision components

Dependace on electron energy
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Radiative vs. Collision components

Dependace on material (Z)

➢ Radiative process becomes dominant in tungsten from around 10 MeV

➢ This is why the conversion target (anode) of the X-ray tube is made of high Z 

material (W) 
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Radioactive decay

Q8: What type of shielding would you use for intense high energy β-sources ?  



➢ The range of the electrons in matter depends directly on the energy of the particle 

(the higher the energy, the larger the path)

➢ In the case of water, there is an empirical relationship between the range (in cm) 

and the energy of the monoenergetic electron beam (in MeV):
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➢ β particles with max energy of 2 MeV 

are stopped by 1 cm of plexiglas
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Electron range in matter

e

E MeV
R cm

2
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➢ The heavy charged particles (eg protons or α particles) interact with the material

essentially by the Coulomb force and are slowed down by collisions and not by

radiative loss as for the electrons.

68

Heavy particles

Electron track

α particle track
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Stopping power of heavy particles
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➢ Stopping power increases with ion mass and decreases with ion energy



Alphas

ICRU 86
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Example: 62 MeV proton beam in water
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The Bragg peak

➢ The Bragg peak is a direct consequence of increased stopping power of heavy

particles near the end of their trajectory
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Radioactive decay

Q9: What is the advantage of using protons for tumor irradiation 

compared to  X-rays?  
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Range of heavy particles in water
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➢ The path of α particles emitted by a radioactive source (typical energy of about 

5 MeV) in soft tissue is about 0.03 mm.

➢ This distance is very small and corresponds to the thin layer of dead cell on the 

surface of the skin. It is therefore relatively easy to protect from external α-
source by using for example a simple sheet of paper or a glove.

74

Radiation protection: Alpha particles
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Summary 
 

− Charged particles are continually slowed as they pass through matter. They produce excitations 
and ionizations along their trace. 

− Charged particles have a limited penetration depth in matter: their range. The heavier and 
more charged the particle, the smaller its range. 

− For electrons: 
• Trajectory is chaotic (zigzags). 
• Stopping power through collision increases at low energy 

− A positron (or beta plus particle) behaves like an electron. The difference can be seen at the 
end of the trajectory, when it annihilates itself with a surrounding electron to create two 511 keV
photons. 

− For heavy charged particles (mass greater or equal to the proton): 
 • The trajectory is straight. 

• Braking is achieved essentially through collisions with surrounding electrons. 
• Braking power increases at low energy (Bragg peak). 

− The main differences between interactions of photons and heavy charged particles are: 
• Photons are indirectly ionizing while charged particles are directly ionizing. 
• Photons have a small number of reactions which free a great amount of energy   

while particles have many reactions which free a small amount of energy each time. 
 



➢ A photon penetrating the material can interact with the atomic electrons,

nucleus or electromagnetic fields around the electrons or nucleus. During

an interaction, the photon can "bounce" without loss of energy (elastic

scattering), "bouncing" with loss of energy (inelastic scattering), or

"disappearing" with loss of all its energy (absorption).

76

Interaction of photons with matter



➢ The photoelectric effect consists of the absorption of a photon by an 

electron of an atom.

➢ The photon disappears in the interaction and gives all its energy to the 

electron. The atom is then ionized.

77

Interaction of photons with matter

Photoelectric effect

Image credit: Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012
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Interaction of photons with matter

Photoelectric effect
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➢ The probability of the photoelectric effect is increasing with 

the atomic number (Z) is high. Typically, n is between 3 and 4. 

➢ The photoelectric effect is important 

at low photon energies

➢ This makes the photoelectric effect 

the most important photon 

interaction in radiography

𝜎 ≈
𝑍𝑛

𝐸3
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Radioactive decay

Q10: What type of material would you use to protect from X-rays?



➢ The Compton effect (also called inelastic scattering): a photon collides with an electron.

➢ Part of the energy of the photon is transmitted to the electron. The rest of the energy

appears as a scattered photon.
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Interaction of photons with matter

Compton effect

Image credit: Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012



➢ Probability of Compton effect depends on photon energy, dominant at

medium energy. But it occurs in all materials and at all energies.

➢ Probability of Compton effect does not depend on Z, it depends on

electron density which varies by only 20% from lightest to heaviest

elements
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Interaction of photons with matter

Compton effect

6

0.01

2

3

4

5
6

0.1

2




 [
c
m

2
/g

]

0.01 0.1 1 10

Énergie [MeV]

Probability of Compton effect in water



➢ Pair creation is an absorption of the photon by the electromagnetic field of the 

nucleus. 

➢ It consists of the materialisation of the photon into an electron-positron pair

82

Interaction of photons with matter

Pair production

Image credit: Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012



➢ The minimum energy required for the incident photon for a pair creation to be 

possible is 1022 keV (twice 511 keV). 

➢ Once the threshold energy is exceeded, the interaction probability increases 

with energy
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Interaction of photons with matter

Pair production

Image credit: Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012

0.0001

0.001

0.01




 [
g

/c
m

2
]

1 10 100 1000 10000 100000

Energie [MeV]

 Proximité du noyau 
 Proximité d'un électon 

Probability of pair production in Al



84

Interaction of photons with matter

Image credit: Cherry, Sorenson, Phelps, Physics in Nuclear Medicine, Sauders Elsevir, 2012

Interaction mechanism as a function of photon energy and Z of the material:
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Photon beams attenuate, no range

source de 

photons
N

source de 

photons
N-dN

dx

(a)

(b)

Proportion interacting: dN/N

photon 
source

photon 
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Photon attenuation: half value layer
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Summary 

− The photoelectric effect involves the absorption of a photon by one of the atom’s electrons. Its 
probability is maximum when the photon’s energy is just enough to eject the electron outside its 
orbital. The interaction coefficient decreases with energy (1/hν)3 and rapidly increases with the 
surrounding Z (Z4.5). 

− The Compton effect is the inelastic scattering of a photon on a “free” electron in which the electron 
absorbs a part of the photon’s energy. The probability of the Compton effect decreases with the 
energy of the photon. It does not directly depend on the surrounding atomic number but is 
proportional to electron density. 

− Pair creation consists in the materialization of an electron-positron pair when a photon disappears 
somewhere near the nucleus. The interaction has an energy threshold of 1022 keV. The probability of 
pair creation increases with the energy of the incident photon as well as with the atomic number of 
the material. 

− The positron obtained through pair creation finishes by being slowed down and disintegrates with a 
surrounding electron, producing two 511 keV photons. 

− The photoelectric effect occurs most often at low energy, the Compton effect prevails at medium 
energy (typically from 100 keV to 10 MeV) and pair creation prevails at high energy. 
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Summary of penetration capabilities of 

radiation emitted by radioactive materials
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